Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Transl Med ; 22(1): 310, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532482

RESUMO

BACKGROUND: Paraquat (PQ) is a widely used and highly toxic herbicide that poses a significant risk to human health. The main consequence of PQ poisoning is pulmonary fibrosis, which can result in respiratory failure and potentially death. Our research aims to uncover a crucial mechanism in which PQ poisoning induces senescence in epithelial cells, ultimately regulating the activation of pulmonary fibroblasts through the exosomal pathway. METHODS: Cellular senescence was determined by immunohistochemistry and SA-ß-Gal staining. The expression of miRNAs was measured by qPCR. Pulmonary fibroblasts treated with specific siRNA of SIRT1 or LV-SIRT1 were used to analysis senescent exosomes-mediated fibroblasts activation. Luciferase reporter assay and western blot were performed to elucidated the underlying molecular mechanisms. The effects of miR-217-5p antagomir on pulmonary fibrosis were assessed in PQ-poisoned mice models. RESULTS: Impairing the secretion of exosomes effectively mitigates the harmful effects of senescent epithelial cells on pulmonary fibroblasts, offering protection against PQ-induced pulmonary fibrosis in mice. Additionally, we have identified a remarkable elevation of miR-217-5p expression in the exosomes of PQ-treated epithelial cells, which specifically contributes to fibroblasts activation via targeted inhibition of SIRT1, a protein involved in cellular stress response. Remarkably, suppression of miR-217-5p effectively impaired senescent epithelial cells-induced fibroblasts activation. Further investigation has revealed that miR-217-5p attenuated SIRT1 expression and subsequently resulted in enhanced acetylation of ß-catenin and Wnt signaling activation. CONCLUSION: These findings highlight a potential strategy for the treatment of pulmonary fibrosis induced by PQ poisoning. Disrupting the communication between senescent epithelial cells and pulmonary fibroblasts, particularly by targeting the miR-217-5p/SIRT1/ß-catenin axis, may be able to alleviate the effects of PQ poisoning on the lungs.


Assuntos
Exossomos , MicroRNAs , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/genética , Paraquat/metabolismo , Paraquat/farmacologia , beta Catenina/metabolismo , Exossomos/metabolismo , Sirtuína 1/metabolismo , Pulmão/patologia , MicroRNAs/genética , Células Epiteliais/patologia , Fibroblastos/metabolismo
2.
Cancer Immunol Immunother ; 73(4): 73, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430256

RESUMO

BACKGROUND: Cervical cancer is a common malignant tumor in the female. Interleukin (IL)-17A is a proinflammatory factor and exerts a vital function in inflammatory diseases and cancers. M2 macrophage has been confirmed to promote tumor development. Nevertheless, it is not yet known whether IL-17A facilitates cervical cancer development by inducing M2 macrophage polarization. Therefore, this study was conducted to investigate the regulatory effect of IL-17A on M2 macrophage polarization and the underlying mechanism in cervical cancer development. METHODS: RT-qPCR was utilized for testing IL-17A expression in cancer tissues and cells. Flow cytometry was applied to evaluate the M1 or M2 macrophage polarization. Cell proliferative, migratory, and invasive capabilities were measured through colony formation and transwell assays. ChIP and luciferase reporter assays were applied to determine the interaction between IL-17A and octamer-binding transcription factor 4 (OCT4). RESULTS: IL-17A expression and concentration were high in metastatic tissues and cells of cervical cancer. IL-17A was found to facilitate M2 macrophage polarization in cervical cancer. Furthermore, IL-17A facilitated the macrophage-mediated promotion of cervical cancer cell proliferative, migratory, and invasive capabilities. Mechanistic assays manifested that Oct4 binds to and transcriptionally activated IL-17A in cervical cancer cells. Furthermore, Oct4 promoted cervical cancer cell malignant phenotype and M2 macrophage polarization by activating the p38 pathway that, in turn, upregulated IL-17A. Additionally, in vivo experiments confirmed that Oct4 knockdown reduced tumor growth and metastasis. CONCLUSION: Oct4 triggers IL-17A to facilitate the polarization of M2 macrophages, which promotes cervical cancer cell metastasis.


Assuntos
Fator 3 de Transcrição de Octâmero , Neoplasias do Colo do Útero , Feminino , Humanos , Interleucina-17/metabolismo , Macrófagos/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Fator 3 de Transcrição de Octâmero/metabolismo
3.
Adv Mater ; : e2309256, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479377

RESUMO

Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high-performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p- and n-types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo-crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high-density photopatterning with ≈82 000 device arrays cm-2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.

4.
Neuroscience ; 547: 28-36, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552734

RESUMO

Depression is one of the most common forms of psychopathology, which is associated with gut microbiota dysfunction. Dihydroartemisinin (DHA) has been shown to regulate gut microbiota and ameliorate neuropathies, but whether it can be used to treat depression remains unclear. Our study found that DHA treatment raised the preference for sugar water in chronic unpredictable mild stress (CUMS)-induced mice and reduced the immobility time in open field, forced swimming and tail suspension experiments, and promoted doublecortin expression. Additionally, DHA up-regulated the diversity and richness of intestinal microbiota in depression-like mice, and restored the abnormal abundance of microbiota induced by CUMS, such as Turicibacter, Lachnospiraceae, Erysipelotrichaceae, Erysipelatoclostridium, Eubacterium, Psychrobacter, Atopostipes, Ileibacterium, Coriobacteriacea, Alistipes, Roseburia, Rikenella, Eggerthellaceae, Ruminococcus, Tyzzerella, and Clostridia. Furthermore, KEGG pathway analysis revealed that gut microbiota involved in the process of depression may be related to glucose metabolism, energy absorption and transport, and AMPK signaling pathway. These results indicated that DHA may play a protective role in CUMS-induced depression by mediating gut-microbiome.

5.
Dalton Trans ; 53(10): 4598-4606, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38349531

RESUMO

From paddle-wheel starting material Na3Ru2(CO3)4·6H2O, a family of edge-sharing bi-octahedral (ESBO) diruthenium(IV,IV) compounds formulated as Ru2O2(CO3)2(H2O)2L2·nH2O [L = piperazine (1) or 2-methylpiperazine (2), n = 4, and L = 2,2-dimethylpiperazine (3), n = 12] and Ru2O2(CO3)2(OH)4{M(H2O)4}2·nH2O [M = Mg (4), n = 4, and Ni (5), n = 2] were prepared and structurally characterized. The Ru28+ dimer is chelated and bridged by two CO32- and two µ-O in a trans manner, and the Ru-Ru distances fall in the range 2.3808(6)-2.4001(4) Å. Compound 2 shows the shortest Ru-Ru distance for all known ESBO Ru2 compounds reported thus far. Increasing -CH3 groups of terminal piperazine ligands coordinated to the Ru(µ-O)2(µ-O3C)2Ru core, and according to Raman spectra experiments combined with theoretical calculations, the intense bands of compounds 1-3 appearing at ∼360 cm-1 can be assigned to the stretching of Ru-Ru bonds.

6.
Toxicol Sci ; 198(2): 169-184, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38200624

RESUMO

Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.


Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Hipóxia/complicações , Oxigênio , Transdução de Sinais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular
7.
Res Sq ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260380

RESUMO

The role of glutathione peroxidase 4 (GPX4) in ferroptosis and various cancers is well-established; however, its specific contribution to colorectal cancer has been unclear. Surprisingly, in a genetic mouse model of colon tumors, the deletion of GPX4 specifically in colon epithelial cells increased tumor burden but decreased oxidized glutathione. Notably, this specific GPX4 deletion did not enhance susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice with varied iron diets but showed vulnerability in mice with a vitamin E-deficient diet. Additionally, a high manganese diet heightened susceptibility, while a low manganese diet reduced DSS-induced colitis in colon epithelial-specific GPX4-deficient mice. Strikingly, the low manganese diet also significantly reduced colorectal cancer formation in both colon epithelial-specific GPX4-deficient and wildtype mice. Mechanistically, antioxidant proteins, especially manganese-dependent superoxide dismutase (MnSOD or SOD2), correlated with disease severity. Treatment with tempol, a superoxide dismutase mimetic radical scavenger, suppressed GPX4 deficiency-induced colorectal tumors. In conclusion, the study elucidates the critical role of GPX4 in inhibiting colorectal cancer progression by regulating oxidative stress in a manganese-dependent manner. The findings underscore the intricate interactions between GPX4, dietary factors, and their collective influence on colorectal cancer development, providing potential insights for personalized therapeutic strategies.

8.
Aging (Albany NY) ; 16(1): 153-168, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175691

RESUMO

BACKGROUND: Osteoarthritis (OA) is one of the main causes of pain and disability in the world, it may be caused by many factors. Aging plays a significant role in the onset and progression of OA. However, the mechanisms underlying it remain unknown. Our research aimed to uncover the role of aging-related genes in the progression of OA. METHODS: In Human OA datasets and aging-related genes were obtained from the GEO database and the HAGR website, respectively. Bioinformatics methods including Gene Ontology (GO), Kyoto Encyclopedia of Genes Genomes (KEGG) pathway enrichment, and Protein-protein interaction (PPI) network analysis were used to analyze differentially expressed aging-related genes (DEARGs) in the normal control group and the OA group. And then weighted gene coexpression network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO) regression, and the Random Forest (RF) machine learning algorithms were used to find the hub genes. RESULTS: Four overlapping hub genes: HMGB2, CDKN1A, JUN, and DDIT3 were identified. According to the nomogram model and receiver operating characteristic (ROC) curve analysis, four hub DEARGs had good diagnostic value in distinguishing normal from OA. Furthermore, the qRT-PCR test demonstrated that HMGB2, CDKN1A, JUN, and DDIT3 mRNA expression levels were lower in OA group than in normal group. CONCLUSION: Finally, these four-hub aging-related genes may help us understand the underlying mechanism of aging in osteoarthritis and could be used as possible diagnostic and therapeutic targets.


Assuntos
Proteína HMGB2 , Osteoartrite , Humanos , Biologia Computacional , Aprendizado de Máquina , Osteoartrite/diagnóstico , Osteoartrite/genética , Envelhecimento/genética
9.
BMC Womens Health ; 24(1): 75, 2024 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281955

RESUMO

BACKGROUND: Cervical cancer is the fourth most common malignant tumor troubling women worldwide. Whether marital status affects the prognosis of cervical cancer is still unclear. Here, we investigate the prognostic value of marital status in patients with cervical cancer based on the seer database. MATERIAL/METHODS: The demographic and clinical data of patients with cervical cancer were extracted from the Surveillance, Epidemiology, and End Results (SEER) database from 1975 to 2017. Patients were divided into two groups (married and unmarried) according to marital status, and then the clinical characteristics of each group were compared using the chi-square test. Propensity score matching (PSM) was used to reduce differences in baseline characteristics. The overall survival (OS) and cervical cancer-specific survival (CCSS) were assessed by the Kaplan-Meier method, univariate and multivariate Cox regression models, and stratified analysis. Moreover, univariate and multivariate competing risk regression models were performed to calculate hazard ratios (HR) of death risk. RESULTS: A total of 21,148 patients were included in this study, including 10,603 married patients and 10,545 unmarried patients. Married patients had better OS(P < 0.05) and CCSS (P < 0.05) compared to unmarried patients, and marital status was an independent prognostic factor for both OS (HR: 0.830, 95% CI: 0.798-0.862) and CCSS (HR: 0.892, 95% CI: 0.850-0.937). Moreover, after eliminating the competing risk, married patients (CCSD: HR:0.723, 95% CI: 0.683-0.765, P < 0.001) had a significantly decreased risk of death compared to unmarried patients. In stratified analysis, the married patients showed better OS and CCSS than the unmarried patients diagnosed in 1975-2000 and 2001-2017. CONCLUSIONS: Being married was associated with a favorable prognosis of cervical cancer, and marital status was an independent prognostic factor for cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Estudos Retrospectivos , Estimativa de Kaplan-Meier , Estado Civil , Prognóstico
10.
Adv Sci (Weinh) ; 11(8): e2305800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115748

RESUMO

In recent decades, polymer semiconductors, extensively employed as charge transport layers in devices like organic field-effect transistors (OFETs), have undergone thorough investigation due to their capacity for large-area solution processing, making them promising for mass production. Research efforts have been twofold: enhancing the charge mobilities of polymer semiconductors and augmenting their mechanical properties to meet the demands of flexible devices. Significant progress has been made in both realms, propelling the practical application of polymer semiconductors in flexible electronics. However, integrating excellent semiconducting and mechanical properties into a single polymer still remains a significant challenge. This review intends to introduce the design strategies and discuss the properties of high-charge mobility stretchable conjugated polymers. In addition, another key challenge faced in this cutting-edge field is maintaining stable semiconducting performance during long-term mechanical deformations. Therefore, this review also discusses the development of healable polymer semiconductors as a promising avenue to improve the lifetime of stretchable device. In conclusion, challenges and outline future research perspectives in this interdisciplinary field are highlighted.

11.
Sci Rep ; 13(1): 21592, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062071

RESUMO

Ferroptosis is a form of cell death that is triggered by iron-dependent lipid peroxidation and is closely associated with osteoarthritis. The primary interventions for inhibiting ferroptosis in osteoarthritis are anti-lipid peroxidation and iron chelation. The objective of our study is to investigate the characteristics of ferroptosis in osteoarthritis and identify the optimal time points for inhibiting ferroptosis to alleviate disease progression. Ferroptosis-related alterations and markers of OA were analyzed in paired intact and damaged cartilages from OA patients by immunofluorescence, qRT-PCR, mitochondrial membrane potential and immunohistochemistry. We also compared Ferroptosis-related alterations in cartilage of mild, moderate, and severe OA (according to the modified Mankin score). In addition, we compared the effect of Fer-1 on ferroptosis and the protection of chondrocytes by detecting markers of both ferroptosis and OA by immunofluorescence, CCK8 and qRT-PCR. Ferroptosis-related alterations (GPX4 downregulation, ACSL4 upregulation, MDA, LPO accumulation, Mitochondrial membrane potential decreased) in the damaged area cartilage were more severe than those in the intact area and increased with the progression of OA. Compared with mild OA group, the activity of chondrocytes treated with Fer-1 (a ferroptosis inhibitor) was increased, mitochondrial function was improved, and ferroptosis was reduced (GPX4 upregulation, SLC7A11 upregulation, ACSL4 downregulation,), and promoted the expression of COL2A1 and inhibited the expression of MMP13. However, these changes were not observed in moderate and severe OA chondrocytes. Ferroptosis occurs in a region-specific manner and is exacerbated with the progression of human OA cartilage degeneration. Inhibition of ferroptosis might had a therapeutic effect on chondrocytes with mild OA but had no significant therapeutic effect on chondrocytes with moderate to severe OA.


Assuntos
Cartilagem Articular , Ferroptose , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Células Cultivadas , Osteoartrite/metabolismo , Condrócitos/metabolismo
13.
Allergol Immunopathol (Madr) ; 51(6): 60-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937497

RESUMO

BACKGROUND: Severe pneumonia is a kind of disease that develops from lung inflammation, and new drugs are still required to treat the same. Erythropoietin (EPO) is widely used to treat anemia in patients. However, there are fewer studies on the role of EPO in neutrophil extracellular trappings (NETs) and pneumonia, and the mechanism is unclear. OBJECTIVE: To investigate the possible effects of EPO on the formation of NETs and progression of pneumonia. METHODS: Mice pneumonia model was induced by tracheal lipopolysaccharide (LPS) administration. Hematoxylin and eosin (H&E) staining and automatic blood cell analysis were performed in this model to confirm the effects of EPO on lung injury. Flow cytometry, enzyme-linked immunosorbent serological assay, and immunostaining assay were conducted to detect the effects of EPO on the inflammation as well as formation of NETs in mice. Immunoblot was further conducted to confirm the mechanism. RESULTS: EPO alleviated LPS-induced lung injury. EPO reduced the release of inflammatory factors induced by LPS. In addition, EPO inhibited the formation of NETs. Mechanically, EPO inhibited tumor necrosis factor (TNF) receptor associated factor 2 (TRAF2)/nuclear factor kappa-B (NF-κB) activity in mouse models, and therefore suppressed the progression of pneumonia. CONCLUSION: EPO inhibited formation of NETs to ameliorate lung injury in a pneumonia model, and could serve as a drug of pneumonia.


Assuntos
Lesão Pulmonar Aguda , Eritropoetina , Armadilhas Extracelulares , Pneumonia , Humanos , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Pneumonia/induzido quimicamente , Eritropoetina/uso terapêutico , Eritropoetina/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico
14.
Theor Appl Genet ; 136(12): 246, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973669

RESUMO

KEY MESSAGE: qSB12YSB, a major quantitative sheath blight resistance gene originated from rice variety YSBR1 with good breeding potential, was mapped to a 289-Kb region on chromosome 12. Sheath blight (ShB), caused by Rhizoctonia solani kühn, is one of the most serious global rice diseases. Rice resistance to ShB is a typical of quantitative trait controlled by multiple quantitative trait loci (QTLs). Many QTLs for ShB resistance have been reported while only few of them were fine-mapped. In this study, we identified a QTL on chromosome 12, in which the qSB12YSB resistant allele shows significant ShB resistance, by using 150 BC4 backcross inbred lines employing the resistant rice variety YSBR1 as the donor and the susceptible variety Lemont (LE) as the recurrent parent. We further fine-mapped qSB12YSB to a 289-kb region by generating 34 chromosomal segment substitution lines and identified a total of 18 annotated genes as the most likely candidates for qSB12YSB after analyzing resequencing and transcriptomic data. KEGG analysis suggested that qSB12YSB might activate secondary metabolites biosynthesis and ROS scavenging system to improve ShB resistance. qSB12YSB conferred significantly stable resistance in three commercial rice cultivars (NJ9108, NJ5055 and NJ44) in field trials when introduced through marker assisted selection. Under severe ShB disease conditions, qSB12YSB significantly reduced yield losses by up to 13.5% in the LE background, indicating its great breeding potential. Our results will accelerate the isolation of qSB12YSB and its utilization in rice breeding programs against ShB.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Fenótipo , Estudos de Associação Genética
15.
Int J Nanomedicine ; 18: 5871-5890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37873552

RESUMO

Background: Hyaluronic acid (HA) is a popular biological material for osteoarthritis (OA) treatment. Pioglitazone, a PPAR-γ agonist, has been found to inhibit OA, but its use is limited because achieving the desired local drug concentration after administration is challenging. Purpose: Herein, we constructed HA-based cartilage-targeted nanomicelles (C-HA-DOs) to deliver pioglitazone in a sustained manner and evaluated their efficacy in vitro and in vivo. Methods: C-HA-DOs were chemically synthesized with HA and the WYRGRL peptide and dodecylamine. The products were characterized by FT-IR, 1H NMR, zeta potential and TEM. The drug loading rate and cumulative, sustained drug release from Pio@C-HA-DOs were determined, and their biocompatibility and effect on oxidative stress in chondrocytes were evaluated. The uptake of C-HA-DOs by chondrocytes and their effect on OA-related genes were examined in vitro. The nanomicelle distribution in the joint cavity was observed by in vivo small animal fluorescence imaging (IVIS). The therapeutic effects of C-HA-DOs and Pio@C-HA-DOs in OA rats were analysed histologically. Results: The C-HA-DOs had a particle size of 198.4±2.431 nm, a surface charge of -8.290±0.308 mV, and a critical micelle concentration of 25.66 mg/Land were stable in solution. The cumulative drug release from the Pio@C-HA-DOs was approximately 40% at pH 7.4 over 24 hours and approximately 50% at pH 6.4 over 4 hours. Chondrocytes rapidly take up C-HA-DOs, and the uptake efficiency is higher under oxidative stress. In chondrocytes, C-HA-DOs, and Pio@C-HA-DOs inhibited H2O2-induced death, reduced intracellular ROS levels, and restored the mitochondrial membrane potential. The IVIS images confirmed that the micelles target cartilage. Pio@C-HA-DOs reduced the degradation of collagen II and proteoglycans by inhibiting the expression of MMP and ADAMTS, ultimately delaying OA progression in vitro and in vivo. Conclusion: Herein, C-HA-DOs provided targeted drug delivery to articular cartilage and improved the role of pioglitazone in the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Ácido Hialurônico/química , Pioglitazona/farmacologia , Pioglitazona/metabolismo , Pioglitazona/uso terapêutico , Peróxido de Hidrogênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Osteoartrite/patologia , Condrócitos
16.
Brain Res Bull ; 204: 110773, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793597

RESUMO

Depression is a common mental illness. Ferroptosis is a form of cell death that may be responsible for neurological disease, but the role of ferroptosis in depression remains unclear. tRNA-derived small RNA (tsRNA) is an emerging non-coding small RNA, making it an important medium for studying neurological diseases. Chronic unpredictable mild stress (CUMS) was used to construct the depression model in mice, which was treated with ferrostatin-1 (Fer-1). Classical behavioral test, immunofluorescence and small RNA sequencing were used to detect depression-like behaviors, neuronal proliferation and the expression profile of tsRNAs in mice, respectively. The primary neuronal cell damage model was constructed by corticosterone (CORT), and the function of key tsRNA was investigated by quantitative real-time PCR, western blot and CCK-8 assays. Here, Fer-1 reduced the depression-like behavior of CUMS-induced mice and promoted neuronal growth. In addition, CUMS caused the disorder of tsRNA expression profile in hippocampal tissues of mice, and Fer-1 alleviated the abnormal tsRNA expression, among which tsRNA-3029b was an effective target. In vitro experiments manifested that ROS accumulation and decreased expression of SLC7A11 and GPX4 were found in CORT-induced depression-like cell model, suggesting that ferroptosis was involved in neuronal injury. However, inhibition of tsRNA-3029b suppressed neuronal cell ferroptosis and facilitated neuronal regeneration. In conclusion, Fer-1 showed an antidepressant effect in CUMS-induced mice and alleviated the abnormal expression profile of tsRNA. tsRNA-3029b was a key target in depression, and silencing of tsRNA-3029b reduced the occurrence of ferroptosis and protected neurons from injury, which may provide novel target for the treatment of depression.


Assuntos
Transtorno Depressivo , Ferroptose , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , RNA/farmacologia , RNA/uso terapêutico
17.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166846, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37579983

RESUMO

Colorectal cancer (CRC) is the third most common cancer and is also the third leading cause of cancer-related death in the USA. Understanding the mechanisms of growth and progression of CRC is essential to improve treatment. Macronutrients such as glucose are energy source for a cell. Many tumor cells exhibit increased aerobic glycolysis. Increased tissue micronutrient iron levels in both mice and humans are also associated with increased colon tumorigenesis. However, if iron drives colon carcinogenesis via affecting glucose metabolism is still not clear. Here we found the intracellular glucose levels in tumor colonoids were significantly increased after iron treatment. 13C-labeled glucose flux analysis indicated that the levels of several labeled glycolytic products were significantly increased, whereas several tricarboxylic acid cycle intermediates were significantly decreased in colonoids after iron treatment. Mechanistic studies showed that iron upregulated the expression of glucose transporter 1 (GLUT1) and mediated an inhibition of the pyruvate dehydrogenase (PDH) complex function via directly binding with tankyrase and/or pyruvate dehydrogenase kinase (PDHK) 3. Pharmacological inhibition of GLUT1 or PDHK reactivated PDH complex function and reduced high iron diet-enhanced tumor formation. In conclusion, excess iron promotes glycolysis and colon tumor growth at least partly through the inhibition of the PDH complex function.


Assuntos
Ferro , Neoplasias , Humanos , Animais , Camundongos , Ferro/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Neoplasias/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Colo/metabolismo , Glucose/metabolismo
18.
J Orthop Surg Res ; 18(1): 620, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620972

RESUMO

BACKGROUND: Osteoarthritis (OA) is a prevalent disease plaguing the elderly. Recently, chondrocyte ferroptosis has been demonstrated to promote the progression of OA. Peroxisome proliferator-activated receptor-γ (PPARγ) is an important factor in maintaining cartilage health. However, the relationship between PPARγ and chondrocyte ferroptosis in OA and its mechanism is completely unclear. METHODS: We established a surgically induced knee OA rat model to investigate PPARγ and chondrocyte ferroptosis in OA. Rat knee specimens were collected for Safranin O/Fast Green staining and immunohistochemical staining after administered orally placebo or pioglitazone (PPARγ agonist) for 4 weeks. We used RSL3 to establish a chondrocyte ferroptosis model cultured in vitro to study the role of PPARγ activation toward ferroptosis, mitochondrial function, and PTEN-induced putative kinase 1 (Pink1)/Parkin-dependent mitophagy. GW9662 (PPARγ antagonist), Mdivi-1 (mitophagy inhibitor), and chloroquine (mitophagy inhibitor) were employed to investigate the mechanism of PPARγ-Pink1/Parkin-dependent mitophagy in the inhibition of ferroptosis. RESULTS: We found that PPARγ activation by pioglitazone attenuated not only OA but also inhibited the expression of the ferroptosis marker acyl-CoA synthetase long-chain family member 4 (ACSL4) at the same time in rats. Furthermore, in vivo and in vitro data indicated that PPARγ activation restored Pink1/Parkin-dependent mitophagy, improved mitochondrial function, inhibited chondrocyte ferroptosis, and delayed the progression of OA. CONCLUSIONS: The present study demonstrated that PPARγ activation attenuates OA by inhibiting chondrocyte ferroptosis, and this chondroprotective effect was achieved by promoting the Pink1/Parkin-dependent mitophagy pathway.


Assuntos
Ferroptose , Mitofagia , Osteoartrite do Joelho , PPAR gama , Animais , Ratos , Condrócitos , Pioglitazona/farmacologia , PPAR gama/metabolismo , Proteínas Quinases
19.
Cell Death Discov ; 9(1): 234, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422468

RESUMO

Sterol carrier protein 2 (SCP2) is highly expressed in human osteoarthritis (OA) cartilage, accompanied by ferroptosis hallmarks, especially the accumulation of lipid hydroperoxides (LPO). However, the role of SCP2 in chondrocyte ferroptosis remains unexplored. Here, we identify that SCP2 transports cytoplasmic LPO to mitochondria in RSL3-induced chondrocyte ferroptosis, resulting in mitochondrial membrane damage and release of reactive oxygen species (ROS). The localization of SCP2 on mitochondria is associated with mitochondrial membrane potential, but independent of microtubules transport or voltage-dependent anion channel. Moreover, SCP2 promotes lysosomal LPO increase and lysosomal membrane damage through elevating ROS. However, SCP2 is not directly involved in the cell membrane rupture caused by RSL3. Inhibition of SCP2 markedly protects mitochondria and reduces LPO levels, attenuating chondrocyte ferroptosis in vitro and alleviating the progression of OA in rats. Our study demonstrates that SCP2 mediates the transport of cytoplasmic LPO to mitochondria and the spread of intracellular LPO, accelerating chondrocyte ferroptosis.

20.
Toxicol In Vitro ; 92: 105653, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487874

RESUMO

Graphene oxide (GO) is a new type of graphene material, but its effects on the male reproductive system are unclear. Here, we investigated the effects of GO on human sperm in vitro. Sperms were incubated with various doses of GO (0, 10, 20, or 40 µg/mL) for different times (1, 3, or 6 h) at 37 °C, followed by analyses of the sperm motility, viability, abnormalities, and DNA fragmentations. GO exposure significantly decreased sperm motility and viability, increased sperm abnormalities, and DNA fragmentation. Moreover, GO exposure resulted in a significant reduction of sperm mitochondrial membrane potential (MMP), which was confirmed by the ultrastructural changes of chromatin and mitochondria caused by GO. These data revealed the adverse effects of GO on sperm. Further research showed that GO exposure led to a significant increase in malondialdehyde (MDA) and reactive oxygen species (ROS) in sperm cells and a significant decrease in total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px). In addition, western blot analysis showed that the levels of Nrf-2 and HO-1 protein expression in GO-treated sperm cells were significantly increased compared to the control. These results indicated that GO had adverse effects on human sperm through oxidative stress, which was associated with Nrf-2/HO-1 signaling pathway.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Grafite , Masculino , Humanos , Grafite/toxicidade , Grafite/química , Motilidade dos Espermatozoides , Sêmen/metabolismo , Estresse Oxidativo , Espermatozoides , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...